
AD-ASIG 001 INTERMETRICS INC CAMBRIDGE MA F/6 9/2
LCASID ADA INTEGRATED ENVIRONMENT I COMPUTER PROGRAM DEVELOPMENT IPECI-ETCCU)

DEC 81 F3060250-C-0291

IIIIIIIIIIIIIIflfflfNSIIE D RADCTR-81358 IIIIIIIIIIIlI

'IIIIIII

111111.252 111112.42GI

111111- 111112.

MICROCOPY RESOLUTION TEST CHART

PHOTOGRAPH THIS SHEET

try sIc.IVWRY

o~~~ (4 fj P t- l rv#T -u

DOCUMENT IDENTIFICATION

'-ui~~ r ~ -l -C '- 0129/ ol

DJS~mTTIO STTEENT A
tPoyed 909 Public reloj I

! ' J.kl:;tjbtj Unmited

DISTRIBUTION STATEMENT

ACCESSION FOR
4 NTIS GRAMI

icTAB DTIC
UNANNOUNCED 5]
JUSTIFICATION ELECT

JAN 2 5 1982

_ _ _ _ _ _ _ _ _ D
Im1 DI1rKBUTION D

AVAILABILflY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

INS UPEy

DISTRIBUTION STAMP

82 01 12 016

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEET
DTIC OcT79 70A

RADC-TR81-358, Vol III (of seven)
Interim Report
December 1981

li

SADA INTEGRATED ENVIRONMENT I
SCOMPUTER PROGRAM DEVELOPMENT
- SPECIFICATION

Intermetrics, Inc.

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, New York 13441

This document was produced under Contract F30602-80-C-0291 for the
Rome Air Development Center. Mr. Don Roberts is the COTR for the Air Force.
Dr. Fred H. Martin is Project Manager for Intermetrics.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-358, Volume III (of seven) has been reviewed and is approved
for publication.

APPROVED: ~

DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

a,

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE fMhel DatEndsted) ________________

READ INSTRUC1ONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORK

1. REPORT-HUMUER f. GOVT ACCESSION NO: 2. RECIPIENT S CATALOG NUMBER

RADC-TR-81-358, Vol III (of seve4)_____________
4.y~ TITL .. &aigg., S. TYPE or REPORT a PEImOD COVERED

interim Report
ADA INTEGRATED ENVIRONMENT I COMPUTER 15 Sep 80 - 15 Mar 81
PROGRAM DEVELOPMENT SPECIFICATION . . PERMINaGw 011G. REPORT NUMBER

____ ___ ___ ____ ___ ___ ____ ___ ___ ___ N/A

7. AUTHOR(@) 8. CONTRACT Olt GRANT NUM8901i')

F30602-80-C-02 91

9.PROMN RAIAINNAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Intermetrics, Inc.ARA&WKU'INMBS
733 Concord Avenue 558108316

Cambridge MA 02138 55811908 __________

It. CONTROLLING OFFICE NAME AMC ADDRESS 12. REPORT DATE

December 1981
Rome Air Development Center (COES) 13. HNMER OPr PAGESIGriffiss AFB NY 13441 75

14. MONI TORING AGE14CY NAME A AOORCSS(Il different froil Controlling Offide) I5. SECURITY CLASS. (of INSreot

Same UNCLASSIFIED
134L D1ECk ASSIPICATION/0OWNGRAOING

NIA! CHECULE
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (fo the .beiroet seted in Block 20. it different from Repe)

Same

10. SUPPLEMENTARY NOTES

R.ADC Project Engineer: Donald F. Roberts (COES)

Subcontractor is Massachusetts Computer Assoc.
It. KEY WORDS (Ceius an ,everso side it necessary end identify' by block OM10600)

Ada MAPSE AIE
Compiler kernel Integrated environment
Database Debugger Editor
KAPSE APSE

20. ABSTRACT (Coniftme an Prve side If necessary and Idenify by block minbst)

The Ada Integrated Environment (AlE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AlE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programing Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a

Iminimal APSE, called a MAPSE. The MAPSE is the foundation upon which anI

DD ~I 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dais SOevd

UNCLASSIPIED
S6CUftglV CLASSIFICATION OF THIS PAQ5(Wft4 040d Xntem*0

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

UNCLASIFIE

UNCRTY(LASSIFI EDNO ?'PGChRDWRO"

TABLE OF CONTENTS

PAGE

1.0 SCOPE 1

1.1 Identification 1
1.2 Functional Summary 1

2.0 APPLICABLE DOCUMENTS 3

2.1 Government Documents 3

2.2 Non-Government Documents 3

3.0 REQUIREMENTS 5

3.1 Program Definition 5

3.1.1 Interface Requirements 5

3.1.1.1 The CP/KAPSE Interface 5

3.1.1.2 CP/Fundamental Programs 5
3.1.1.3 CP/User Programs 7

3.1.2 Main Constituent Compilation Units 9

3.2 Detailed Functional Requirements 11

3.2.1 The MCL Command Language 11

3.2.1.1 User Commands 11
3.2.1.2 Language Elements 35

3.2.2 Processing 44

3.2.2.1 The CP Driver (DRIVER) 44
3.2.2.2 Input Stream Package 47

(INPUT STREAM)

3.2.2.3 Lexical Analyzer 47
3.2.2.4 The MCL Parser (PARSE) 48

3.2.2.5 The Parse-Tree Interpreter (TREE 48
INTERPRET)

3.2.2.6 The Globals Package (GLOBALS) 51
3.2.2.7 The Interpreter Allocation Task 51

(ALLOCATE INTERPRETER)
3.2.2.8 The Background Task Manager 52

(BACKGROUND)
3.2.2.9 Job Invocation (JOB) 53
3.2.2.10 Subprogram Simulation Package 54

(SUBPROG SIMULATE)

3.2.2.11 Variable-Task (VARIABLE) 55
3.2.2.12 String Conversion Package 56

(STRINGCONVERT)

i

INTERMETRICS INCORPORATED , 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661-1840

TABLE OF CONTENTS (Cont'd.)

PAGE

3.2.2.13 Operator Package (OPERATOR) 57

3.2.2.14 Expression Package (EXPRESSION) 57

3.2.2.15 Error Package (ERROR) 58

4.0 QUALITY ASSURANCE PROVISIONS 59

4.1 Introduction 59

4.1.1 Unit Testing 59

4.1.2 Integration Testing 59

4.1.3 Functional Testing 59

10.0 APPENDIX 61

10.1 BNF for MCL (MAPSE Command Language) 61

10.2 Statements and Fundamental Programs 71

10.3 Ada - MCL Comparison 73

LIST OF FIGURES AND ILLUSTRATIONS

FIGURE 3-1: KAPSE FUNCTIONAL RELATIONSHIPS 6

FIGURE 3-2: PARAMETER PASSING 8

FIGURE 3-3: CP MODULES 10

FIGURE 3-4: SAMPLE CP SESSION 14

TABLE 3-1: COMMAND SUMMARY 12

TABLE 3-2: JOB ATTRIBUTES 29

TABLE 3-3: PRE-DEFINED CP VARIABLES 40

TABLE 3-4: MCL OPERATORS 42

TABLE 3-5: IMPLICIT TYPE CONVERSIONS 43

" TABLE 10-1: STATEMENTS 71

TABLE 10-2: FUNDAMENTAL PROGRAMS 72

TABLE 10-3: COMMANDS 73

TABLE 10-4: LANGUAGE ELEMENTS 75

ii

1.0 SCOPE

1.1 Identification

This specification describes the command language with which a
user selects MAPSE facilities, and establishes the requirements for
performance, design, test and qualification of the Command
Processor(CP), a computer program that interprets and acts upon user
commands. This specification also identifies interfaces with the
KAPSE and with other MAPSE tools that, together, provide the full
range of capabilities available to the MAPSE user.

1.2 Functional Summary

The user communicates with the CP via an Ada-like interpretive
language called MCL (MAPSE Command Language). In response to MCL
commands, the CP invokes arbitrary programs, as well as performing
other related actions.

More specifically, the CP provides the following basic
capabilities:

1. invocation of arbitrary tools and user-defined programs,
and control over their execution;

2. help on a per-program or per-program-parameter basis;

3. manipulation of CP variables;

4. redirection of standard input and output for arbitrary
commands;

5. the ability to connect arbitrary commands as co-routines
via pipes;

6. the ability to execute arbitrary commands in the
background, and to control their execution; and

7. the processing of scripts of MCL commands, which may be
parameterized.

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

PAGE LEFT BLANK INTENTIONALLY

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02 138 16(17) 661-1840

2.0 APPLICABLE DOCUMENTS

Please note that the bracketed number preceding the document
identification is used for reference purposes within the text.

2.1 Government Documents

[G-l] Statement of Work for Ada Integrated Environment, PR
No. B-0-3233, December 1979.

[G-2] Requirements for Ada Programming Support Environment,
"STONEMAN", Department of Defense, February 1980.

[G-31 Reference Manual for the Ada Programming Language,
proposed standard document, U.S. Department of Defense,
July 1980 (reprinted November 1980).

2.2 Non-Government Documents.

[N-1] Diana Reference Manual (G.Goos + Wm. A. Wulf, eds.)
Inst-tut Fuer Informatik II, Universitaet Karlsruhe and
Computer Science Department Carnegie-Mellon University,
March 1981.

[I-l] System Specification for Add Integrated Environment,
Type A, Intermetrics, Inc., March 1981, IR-676.

Computer Program Development Specifications for Ada Integrated
Environment (Type 5):

[1-21 Ada Compiler Phases, IR-677

[1-31 KAPSE/Database, IR-678

[1-41 MAPSE Generation and Support, IR-680

[I-5] Program Integration Facilities, IR-681

[1-61 MAPSE Debugging Facilities, IR-682

[1-7] MAPSE Text Editor, IR-683

[1-81 Technical Report (Interim) IR-684

3

"'-.RW aiCS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617 661.1840

PAGE LEFT BLANK INTENTIONALLY

4

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

3.0 REQUIREMENTS

3.1 Program Definition

3.1.1 Interface Requirements

The Command Interpreter interfaces with:

1. the KAPSE;

2. fundamental programs;

3. user programs and scripts.

These interfaces are diagrammed in Figure 3-1, and are
described below.

3.1.1.1 The CP/KAPSE Interface

When a user logs in to the MAPSE system, the system initiator
within the KAPSE invokes the CP on the user's behalf. At the
conclusion of the CP session, control is returned to the system
initiator.

The CP receives its input in interactive mode from the
teletype. The teletype driver within the KAPSE provides the user
with primitive editing capabilities such as character deletion.

In carrying out user-specified commands, the CP invokes various
KAPSE functions. These are described in detail in Section 3.2.2.

3.1.1.2 CP/Fundamental Programs

Some user commands require manipulation of data structures
defined within the CP (e.g., CP variables). These commands are
interpreted within the CP. To change the syntax or effect of such
commands would require the recompilation of the CP.

Commands that do not reference any internal CP data structures
are implemented as linked executable programs called fundamental
programs. These are invoked by the CP to carry out specific

actions. The syntax or effect of a command implemented via a
fundamental program can be modified by recompiling the fundamental
program.

5

INTERMETRICS INCORPORATED ° 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 (6171 661-1840

systern Tr rKAPSE
funtin

1~ 2 1281134-9

Figure 3-1: KAPSE FUNCTIONAL RELATIONSHIP

6

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

The MCL language description uses the term "statement" to
indicate those commands that are carried out within the CP.
Appendix II lists fundamental programs referenced in this document.

3.1.1.3 CP/User Programs

The CP user can invoke an arbitrary program. As described
in Section 3.2.1.1, a program may optionally be supplied with
parameters. If the program does not require parameters, the CP
simply creates a context object for the program and makes the KAPSE
call INITIATE PROGRAM. If, however, the program does take
parameters, special processing is required on the part of the CP and
of the invoked program. Parameters may include CP variables
supplied as OUT parameters, whose value may be modified as a result
of the program's execution.

Each parameterized program must contain a preamble. This
preamble processes parameters on behalf of the program's main
parameterized subprogram, as follows (see Figure 3-2).

The CP creates a context object for the program and writes the
user-specified parameter values into it. The CP then makes the
KAPSE call INITIATE PROGRAM to begin the execution of the specified
program using the CP-created context object.

The program's preamble reads the user-specified parameter
values from the context object. The preamble then calls the
program's main parameterized subprogram, supplying it with the
user-specified parameter values. When that subprogram has
completed, the preamble writes the updated values of any OUT
parameters back into the context object. The CP can then read these
updated parameter values from the context object.

A program may also have help information associated with it via
"help attributes". These attributes include:

'GENERAL HELP: The name of a simple object containing general
help text for the program. If the program has no general help
associated with it, the attribute is undefined.

'PARAMETER HELP: The name of a composite object containing
"parameter helpw simple objects. Each parameter help simple object
contains help text for a specific program parameter. If no such
parameter help text exists, this attribute is undefined.

'OWN PARAMETER HELP: If "TRUE", the program interprets actual
parameter-values of-'?' or ':' as requests for parameter help, and
supplies this help itself.

7

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

context
object

invoked program

J 21281134L-8

FIGURE 3-2: PARAMETER PASSING

8

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661.1840

3.1.2 Main Constituent Compilation Units

The CP is composed of various Ada subprograms, tasks and
packages linked together into an executable program. Referring to
Figure 3-3, DRIVER is the main program of the CP. It reads and
parses user-typed commands (via PARSE), and passes a parse tree on
to the TREEINTERPRET task to be interpreted.

This interpretation may involve:

1. expression evaluation (EXPRESSION);

2. script parameter manipulation (SUBPROGSIMULATE);

3. program execution (JOB);

4. activation of other TREEINTERPRET tasks to process
co-routines; or

5. background execution of commands (BACKGROUND).

Any of these actions may manipulate CP variables via the
VARIABLE task.

9

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

LeParse
Interprete

Background

T/ree Interpret-
J

expressio Job

operator

I Var iable

FIGURE 3-3: CP MODULES

Arrows indicate flow of control.
Modules enclosed in rectangles are procedures or packages.
Modules enclosed in circles are tasks.

10

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 861-1840
77--Mri

3.2 Detailed Functional Requirements

3.2.1 The MCL Command Language

The CP interprets commands written in MCL and performs the
actions they specify. The MCL language provides commands which
facilitate program invocation in an interactive environment. It
borrows Ada language features where relevant. For example, the CP
expects identifiers supplied to a command to adhere to the Ada syntax
for an identifier. Where Ada syntax is inappropriate, new constructs
are introduced. Appendix 10.3 summarizes those areas in which MCL
syntax differs from that of Ada.

MCL is presented below in two sections. First, the user command
repertoire is presented. This is followed by a more formal language

descrip' "on.

* The CP command repertoire, summarized in Table 3.1, provides all
standard functions required to run MAPSE tools and user programs.
Commands can be executed in the foreground or background and can be
executed as co-routines. The user can, via the CP, interrupt and
restart program execution, manipulate CP variables and database
objects, and direct the flow of control of program executions.
Commands may be entered interactively or stored, as scripts, for
later execution. Via the CP, a user can call any Ada program,
including itself. Further, any executing Ada program can call the
CP.

In the following discussion, all tokens or constructs that are
identical to Ada constructs are so noted with a parenthesized
reference to the appropriate Ada LRM section [G-3]. Their formal
syntax (expressed via the variant of Backus-Naur Form used in the Ada
LRM) appears in the complete syntax in Appendix 10.1. Tokens or
constructs that are CP-specific are described in detail and their BNF
representation included in the text. Interactions between a user and
the CP are included below for illustrative purposes. In such
samples, characters printed by the CP are underlined.

3.2.1.1 User Commands

The user requests the services of the CP via commands. A
command consists of a sequence of tokens separated by blanks or
carriage returns, and delimited by a semicolon (which can be omitted
if it immediately precedes a carriage return). A command is
optionally preceded by a label, of the form <<identifier>>. Typing

*the interrupt character (control-C) causes all tokens processed in
the current command to be ignored. If a command contains an error,
the CP issues an error message.

The CP processes command input line by line; that is, when a

carriage return is entered, the line is parsed. Any commands

delimited by semicolons are executed. If the tokens immediately

preceding the carriage return describe a complete command, the CP
assumes that the semicolon was omitted, and executes the command.

Otherwise, the CP examines the next line for continuation text.

11

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

In interactive mode, a prompt is printed after each line is
processed to indicate that the CP is ready to process the next line.
This may be a primary prompt (':'), which indicates that the
processed line ended with a complete command, or a secondary prompt
("line number/") to remind the user that command input is incomplete.

TABLE 3-1: Command Summary

Command Purpose Example

help provide help for a program HELP COMPILE
or CP script

program invoke a program or CP COMPILE MYFILE
call script

assignment expression manipulation %A:= %B+2
get
put

createsimple manipulate database objects COPY MYFILE YOURFILE
createcomposite
delete
copy
rename

loop flow control IF %A<2 THEN
if PUT "OK" END IF

return terminate CP processing LOGOUT
logout
suspend

resume resume a previously sus- RESUME MYCP
pended CP session

-I connect commands as co- FLIGHT -1 LANDER
routines via pipes

-> redirect a command's SORT MYFILE ->
-< standard input or output OUTFILE

SET INPUT redirect standard input or SET INPUT MYFILE
SET-OUTPUT output for all subsequent

commands

12

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Table 3-1: Command Summary (Cont'd.)

Command Purpose Example

-& execute a command as a COMPILE MYFILE -&
background task

abort abort a background task or ABORT T4
wait wait for the completion of

a background task

block group commands for I/O re- BEGIN COMPILE A
direction, pipes, or back- LIST A
ground execution END -> OUTPUT

stop control the execution of STATUS .Tl.COMPILE
start an invoked program or CP
cancel script
status

exec interpret data as a command EXEC %A & LOW

subprogram import and export parameters PROCEDURE COMPLIST
simulation within a script (%FILE:STRING)

IS BEGIN
COMPILE %FILE
LIST %FILE

END

For example:

: COMPILE MYFILE -- comments as in Ada
%A : 2; -- CP variables begin with a '%'

COMPILE MYFILE; LIST MYFILE

S<<LISTLOOP>> FOR %I IN l..5
LOOP -- command not complete yet

LIST MYFILE END
3 LOOP

-- primary prompt indicates the command is complete

Figure 3-4 shows a sample CP session.

13

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 601-1840

WELCOME TO THE MAPSE SYSTEM

: HELP COMPILE -- command help

help text

_ COMPILE MYFILE LIB => MYLIB-- program invocation with
-- positional and named parameters

_ FOR %I -- CP variable names start with '%'

1/ IN i..I0 -- secondary prompt

2/ LOOP -- flow control.
-- LPT is a program which queues text

3/ LPT MYFILE END 70OP -- files to be printed on the line printer

: FLIGHTSIM LEVEL= -- another program invocation

: %EXITSTATU. -- display exit status of the last invoked
-- program

OK

LOGOFF

FIGURE 3-4: SAMPLE CP SESSION

(a) Invoking the CP. When the user logs into the MAPSE, the CP is
invoked on his--ehaf. Associated with this CP is a context object
[1-3, 3.2.6.1] that can be used to create temporary database objects,
as well as a "current" window (CURRENT DATA) for permanent database
objects. The user imay specify a sequence of commands to be performed
by the CP as part of its startup, by placing those commands in the
database object "CP STARTUP" in CURRENT DATA. This startup file
enables the user to create a pre-defined environment in which to
work. For example, "CPSTARTUP" might contain the text:

%LIB:=ADALIB.YOURLIB.MYLIB

CHECKMAIL -- program invocation

"DON'T FORGET TO CALL HOME" -- expression to be printed

The CP, as part of its startup, would define the variable %LIB,
invoke the CHECK MAIL program, and print a message. It would then
begin taking commands from the user.

The remainder of this section discusses in detail the command
repertoire summarized in Table 3-1.

(b) " Information. Information about invokable programs may beobtained via the HELP command.

14

INTERMETRICS INCORPORATED @ 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 % (617) 661-1840

help_command HELP [databaseliteral]

HELP with no parameter requests general information about all CP
commands and invokable programs. More information about a specific
program can be requested by providing the program name as an argument
to HELP. If the program specified does not exist or help is not
available for it, the user is informed. Notice that a program name
is specified as an unquoted string. Within commands, the CP
interprets program names in terms of the PROGRAM SEARCH LIST
attribute associated with the CP's context object. The program-must
lie within one of the composite objects named in
PROGRAMSEARCHLIST.

(c) Program Invocation. A user can invoke programs and functions with
or without parameters.

PROGRAM CALLS: The program call command invokes an arbitrary linked
executable object.

program call statement objname[actualparameterpart]
actual__arameter part

[(]parameter association (separator parameterassociation}[)]
separator ::= blank I comma
parameter association ::=

[formal parameter=>] actual parameter
formalparameter ::= identifier
actual parameter expression I helpmark
help mark ::= ?

The syntax shown above for a program call is similar to Ada
syntax for a procedure call, except that: (1) the procedure name is
replaced by the name of the program to be invoked; (2) the
parentheses surrounding the actual parameter part may be omitted; and
(3) the comma between parameter associations may optionally be
replaced by a blank. However, if the user wishes to continue the
parameter list on the next line, a comma is required after the last
parameter association on the current line.

PARAMETER PASSING: The actual parameter part of a program call
consists of one or more parameter associations, each of which
specifies an actual parameter to be passed to the invoked program,
either positionally or by name.

For positional parameters, the actual parameter corresponds to
the formal parameter with the same position in the invoked program's
formal parameter list. For named parameters, the corresponding
formal parameter is explicitly given in the call [G-3, 6.4]. Unlike
in Ada, positional and named parameters may be freely mixed. The CP
parses the parameter association by grouping together all positional
parameters, followed by all named parameters. For named parameters,
the CP convention is that only the last occurrence of a parameter
association is used, permitting a user to change a mistyped named
parameter without retyping others. For example, the line:

: FLIGHT 3 5 LEV=>2 6 7 LEV=>3

associates the value 3 with LEV.
15

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

An invoked program may associate a mode of IN, OUT, or IN OUT
with a formal parameter. An actual parameter of mode IN OUT or OUT
must be represented by a variable name. If it is not, a warning is
printed, and the parameter is ignored. The specified variable's
value is updated when the program completes its execution.

As in Ada, if a program's declaration specifies a default value
for an IN parameter, then the corresponding parameter may be omitted
from a call [G-3, 6.4.21.

MCL also implements default OUT parameters if the user fails to
specify an actual parameter of mode OUT, or if the specified
parameter was not a variable name. In these cases, the CP generates
an implicit variable declaration. The generated variable's name is
the catenation of '%' and the formal parameter name. For example, if
a program COMPILE's main subprogram had the specification:

procedure compile (file: string; lib: string;
max error-severity: out string);

the CP user could type

_ COMPILE MYFILE MYLIB

At the conclusion of COMPILE's execution, a CP variable named
%MAXERROR SEVERITY would be generated and assigned the OUT parameter
value. The CP user is informed of any variables generated via
default OUT parameters if the pre-defined CP variable
%INFORM DEFAULT OUT is TRUE (Section 3.2.1.2).

A default OUT parameter may generate a variable name which
conflicts with a currently existing CP variable. For example,

* : %MAXERRORSEVERITY:= OK
: COMPILE MYFILE MYLIB
: -- default OUT parameter variable
-- %MAX ERROR SEVERITY is already defined

If the pre-defined CP variable %AUTO REDEFINE is TRUE, the OUT
* parameter value replaces the current value of the variable. If

%AUTO REDEFINE is FALSE, the user is queried as to whether the
already defined variable should take on its new default OUT parameter
value.

PARAMETER HELP: The user may request information about a
positional or named parameter by supplying a question mark in place
of the actual parameter value, followed by a new line. Since the '?'
is not part of the basic graphic character set, a colon may be used
instead. The action taken depends on the manner in which the invoked
program chooses to deal with requests for parameter help. If the
program can provide no parameter help, the user is informed, and may
continue specifying parameter associations to the program. For
example:

16

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

MYPROG 2 ?

No help available for MYPROG. Please continue supplying

parameters:

If the called program has associated with it help text for the
relevant parameter, then that text is printed, and the user may
continue specifying parameters. If the called program wishes to
interpret any help requests itself, the actual parameter part is
considered complete, and the program is invoked. At the conclusion
of the program's invocation, the user is informed that no further
parameter associations will be accepted but, rather, the program call
command must be resubmitted. For example:

FLIGHTSIM LEVEL --> ?

dialogue with the invoked program FLIGHTSIM

Please resubmit the program call

FUNCTION INVOCATION: An MCL function is a program that returns
a value. The syntax for a function invocation is similar to that for
program calls:

function-call ::= objname([actual parameter_part])

A function call's actual parameter part is similar to that of a
program call, the differences being that it must be surrounded by
parentheses and that it can only contain IN parameters. The user may
also request parameter help for a function.

Examples of function calls:

4 LEXICAL LENGTH(%V)

SINE (2.0)

(c) Expression Manipulation. MCL commands are provided to:

1. store an expression's value in a variable or database
attribute (assignment);

2. read and store a user-typed literal (GET), and;

3. display the value of an expression (PUT).

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

ASSIGNMENT: The assignment command replaces the current value
of a variable or database object attribute with the value of a
string.

assignment-statement

attribute expression I

variable := expression
The right-hand side of an assignment must be a a string. If it is
not, an implicit conversion is performed.

Since all CP options are controlled via pre-defined variables
(Section 3.2.1.2), the assignment statement can be used to modify
these options.

Examples:

: %Vl:="HELLO"

: %Vl:=HELLO -- equivalent to above,
-- since identifiers don't
-- have to be surrounded
-- by quotes.

: .MYLIB.MYFILE'CONFIG := 4 -- an attribute (named
-- CONFIG) of the
-- database object
-- MYLIB.MYFILE

: %PROMPT : "%" -- modify CP prompt

GET: The GET command causes the CP to read an arbitrary

sequence of literals from standard input and store them (as strings)
-' in CP variables.

get-command ::= GET variable {separator variable)

The literals must describe values of valid MCL types, and must

be separated by blanks, commas, or newlines. Examples:

GET %Vl %V2 -- read values from standard input

"Vl's VALUE"
2.0

: GET %V1 %V2 -< INFILE

-- redirect GET's input. INFILE must contain
--two literals

PUT: The PUT command causes the CP to print the values of an

18

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 9 (617) 661-1840

arbitrary sequence of expressions to standard output.

put command ::= PUT expression {separator expression}
For example:

: PUT %A %B

: PUT "THIS STRING IS PRINTED" & " TO STANDARD OUTPUT"

: PUT HELLO -- unquoted string

The keyword "PUT" may be omitted when a single expression is to
be displayed except in the case of an unquoted string, which is
assumed to be a program call. For example:

:.T1.COMPILE'EXECUTION TIME --attribute value which gives
-- execution

5.2 -- time of an invoked program

%X = %Y

FALSE

(e) Database Manipulation. A variety of KAPSE primitives are
available as MCL commands. The list below is representative of
commands for database manipulation. See [1-3, 3.2.11 for a
complete list of database manipulation facilities.

contents(name: in string) -- returns the entire contents of a text
-- simple object.

createsimple (name: in string); -- creates a simple object.

create composite (name: in string; component da: in string);
-- creates a composite object.

createwindow (name: in string;
target: in string;
common ancestor: in string :="";
partition: in string :="";
capacity: in string :="");

-- creates a window.

delete (name: in string);
-- Deletes a simple object, composite object or window.

copy (oldname: in string; newname: in string);
-- Copies a simple object, composite object or window.

19

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (6117) 881-1840

revoke (super window: in string;
sub window: in string);

-- Incapacitates he specified sub-window if it was derived from
-- the specified superwindow.

getall attributes (name: in string);
--- Returns the value of all non-null non-distinquishing
-- user-defined attributes of a database object.

Examples:

: CREATE WINDOW MYWINDOW YOURWINDOW
CREATE-COMPOSITE MYWINDOW.YOURWINDOW.LOG "MODULE RELEASE NUM"
COMPILE MYFILE -> MYWINDOW.YOURWINDOW.LOG.COMPLOG
DELETE MYWINDOW.YOURWINDOW
GETALLATTRIBUTES(MYWINDOW)

(PURPOSE=>TESTING, CHECKLEVEL=>2)

(f) Flow Control. MCL commands can be used to affect the flow of
contro-lof program invocations.

IF: The IF command selects for execution one or none of a
sequence of MCL commands, depending on the value of one or more
corresponding conditions.

The syntax for the IF command is identical to Ada's [G-3, 5.31:

if statement

IF condition THEN command7input

{ELSIF c on THEN commandinput

ELSE commandinput] END IF

condition ::= expression

The expressions specifying conditions must be of the pre-defined
type BOOLEAN.

LOOP: A loop command specifies that a sequence of statements in
a basic loop is to be executed zero or more times. Its syntax is
identical to Ada's [G-3, 5.51.

20

INTERMETRICS INCORPORATED . 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

...- -- II I - lnI. . . " -"~ l --'
'
" '

loop_statement

[iterationclause] basicloop

iteration-clause ::=

FOR loop_parameter IN discreterange I

WHILE condition

loopparameter ::= variable

discrete_range expression..expression

basic-loop ::= LOOP command input END LOOP

The loop command, like all CP commands, may be exec,,ed in
interactive as well as batch mode.

An exit command causes the termination of an enclosing loop.

exit statement EXIT

An exit command may only appear within a loop [G-3, 5.7]

A loop command without an iteration clause specifies repeated
execution of the basic loop. The basic loop may be left via an
interrupt, via an exit command, or if a command within it terminates
the CP session.

If a loop command contains a WHILE clause, the condition is
evaluated and tested before each execution of the basic loop. If it
evaluates to FALSE, the loop statement terminates; otherwise, the
basic loop is executed.

If a loop command contains a FOR clause, the loop parameter and
discrete range are re-evaluated and tested before each execution of
the basic loop. Examples:

FOR % I IN i...4 LOOP

1/ GET % A

2/ IF % A

3/ THEN FLIGHTSIM %A

4/ END LOOP

(g) Terminating CP Processing. There are several ways to terminate
CP processing. In aI -cases, the CP must be quiescent (i.e., no
background tasks can be active); otherwise, the user is warned and
the terminating command is ignored.

21

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

RETURN: The RETURN command terminates the execution of the
CP, and returns control to the CP's invoker.

returnstatement ::=

RETURN [expression]

If the CP is processing a script that describes a function
(Section m, below), the RETURN command must include an expression
whose value is the result returned by the function.

LOGOUT: The logout command also terminates the execution of

the CP.

logout_statement ::= LOGOUT

Unlike RETURN, however, the LOGOUT command causes the
termination of the entire MAPSE session. Control is returned to the
system initiator.

SUSPEND: The SUSPEND command terminates CP processing,
maintaining its current context, and returns control to the invoker.

suspendstatement ::= SUSPEND objname

The argument, objname, specifies a database object in which the CP's

context is to be saved for reference by a subsequent RESUME command.

SUSPEND MYCP

CP SESSION SUSPENDED

MAPSE SESSION TERMINATED -- typed by the CP's invoker which

-- was the System Initiator
SHUTDOWN COMMANDS: The user may specify a sequence of MCL

commands to be performed automatically prior to CP termination via
LOGOUT or RETURN. These commands must be contained in the database
object "CPSHUTDOWN" in the CP's CURRENTDATA window.

For example, "CPSHUTDOWN" might contain the text

STATUS %TERMINATED JOBS
LIST MYFILE

RESUME: The RESUME command resumes a previously SUSPENDed CP

session.

resumecommand::=RESUME objname

The jobname argument to RESUME is the name under which the
context of a previously SUSPENDed CP was stored.
Example:

22

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

: RESUME MYCP

: --this prompt is printed by the resumed CP session.

(h) I/O Redirection. Many CP commands (for example, PUT) read from
standa-rd input or write to standard output. If unmodified, a
command's standard I/O defaults to the CP's own standard input and
output. The user may redirect the standard input or output of any
command via several convenient notations.

PIPES: The notation -1 between two commands indicates that
the commands are to be connected via a pipe [1-3,3.2.3.1]. Standard
output of the command to the left of the -1 becomes the standard
input of the command to the right of the -1 and the commands execute
as co-routines. A sequence of commands connected via pipes is
referred to as a pipeline command.
For example:

: "STRING TO SERVE AS STANDARD INPUT" -I LPT
-- string is queued to

-- be printed by line printer

: DATE -I FLIGHTLOG OPTION => HEADER

STANDARD I/O: The notation -< is used to redirect a command's

standard input. The notation -> is used to redirect a command's
standard output. The specified database object is opened (for
standard input) or created (for standard output). The command is
interpreted, and the database object is closed. For example:

FLIGHTSIM -< CONTROL FILE ->RESULTS
-- FLIGHTSIM reads its standard input from
-- CONTROL FILE and writes its standard output
--to RESULTS

: COMPILE MYFILE LIB=>MYLIB->RESULTS

Notice that the second output redirection to RESULTS caused the first

command's output to be overwritten.

SET-INPUT and SET-OUTPUT: The notations -< and -> modify the
standard input and output of a single command. The commands
SET INPUT and SETOUTPUT modify the default standard input and output
for all commands executed by the CP.

set input_statement ::= SETINPUT [objname]

setoutput_statement ::= SETOUTPUT [objname]

Each takes as an argument the name of the database object which
is to serve as standard input (output) for subsequent commands . The
database object is opened (for standard input), or created (for
standard output), and remains open until a subsequent SET INPUT
(SET OUTPUT) call, or until the CP session terminates. IT the
data]Sase object name is omitted, standard I/O for commands reverts to

23

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (6171 661-1840

the CP's standard input or output.

For example:

* SET OUTPUT .TMP

* LIST MYFILE

* LIST YOURFILE

would cause .TMP to contain a concatenated listing of MYFILE and
YOURFILE. Standard output of any other command would also be
appended to .TMP until the session terminated, or until the user
reset the default command output. For example:

: SETOUTPUT -- reset to CP's standard output

SETINPUT causes all subsequent commands to take their input

from the specified database object. If the end of the input file is
reached, the user is informed, and default command input is
automatically reset to standard input. For example, if .TMP
contained the string

"10 TRUE HELLO 1.0"

the user might type

: SET INPUT .TMP

: GET %A -- 10

: GET %B %C -- TRUE and HELLO

: GET %D -- 1.0

SETINPUT -- reset to CP's standard input

(i) Background Execution. An MCL command is normally executed in the
foreground; i.e., the CP waits for the command to complete its
execution before accepting further command input. The user may
specify that a command is to execute in the background via the -&
notation. In this mode, the CP begins the execution of the command,
but does not wait for it to terminate before accepting subsequent
user commands. For example:

: COMPILE MYFILE LIB => MYLIB -&

A background command can be viewed as a task object that
executes asynchronously. As in Ada, this object has a name, of the
form "TX", where X is an integer incremented for each task generated.
Alternatively, if the background command is preceded by a label, the
task name is equivalent to the label name. In either case, the name

24

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

.... --. '# - .-. • "' I " ' -AL:-

is displayed to the user when the task begins its execution, and is
also stored in the pre-defined CP variable %LAST TASK.
For example:

COMPILE MYFILE LIB =>MYLIB -&

T4 executing

-- ready to accept next command

<<MYTASK>> FOR %I in l..4 LOOP

1/ FLIGHTSIM %I END LOOP -&

MYTASK executing

The user is informed when the task completes its execution.
For example:

MYTASK completed

The task name can be used to refer to the task in order to abort

it, via the ABORT command.

abort statement ::= ABORT task name {separator task name}

task name identifier

The specified background tasks are aborted.

The user may begin the execution of a command in the background,
then decide to wait for it to conclude its exectuion. The WAIT
command causes the CP to wait for the conclusion of the specified

*task(s) before accepting further command input from the user.

wait statement ::= WAIT task name {separator task name)

For example:

: COMPILE MYFILE LIB =>MYLIB -&

T4 executing

ABORT %LAST TASK

T4 aborted

<<COMP>> COMPILE YOURFILE -&

COMP executing

WAIT COMP

25

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

_ _-_ _"_-_ _- _ - ' * . I

COMP completed

A pipeline command may be invoked in the background. For
example:

FLIGHTSIM -I SORT -&

T6 executing

Any OUT parameter variables in a background command are updated
as the command executes. The user should avoid referencing these
variables before the command terminates, since their value is
indeterminate.

The commands SET INPUT and SET OUTPUT within a background
command reset default input and output only for the background
command. Foreground defaults are unaffected.

(j) Blocks. Multiple commands may be grouped together, in order to
apply a notation to all of them, by means of the block command.

block-statement ::=

BEGIN command-input END

For example, the block

BEGIN LIST MYFILE

I/ COMPILE MYFILE LIB =>MYLIB

2/ END -I LPT

is equivalent to

: LIST MYFILE -I LPT

: COMPILE MYFILE LIB =>MYLIB -I LPT

The block command may be applied to -< and ->. The specified
database object is opened (for standard input) or created (for
standard output) and remains open for the duration of the block.
Thus,

-S ET__OUTPUT .TMP

LIST MYFILE

LIST YOURFILE

SETOUTPUT
26

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

is equivalent to

: BEGIN

I/ LIST MYFILE

2/ LIST YOURFILE

3/ END - > .TMP

except that each command in the first example is executed as it is
typed, while commands in the block are not executed until the entire
block has been entered.

The block command also allows the user to group together

commands for sequential background execution. For example:

: BEGIN

1/ COMPILE MYFILE LIB =>MYLIB

2/ FLIGHTSIM

3/ END -&

T12 executing

causes COMPILE to be executed in the background, followed by
FLIGHTSIM. Notice that this is different from:

COMPILE MYFILE LIB =>MYLIB -&

T12 executing

_ FTIGHTSIM -&

T13 executing

in which COMPILE and FLIGHTSIM execute simultaneously.

(k) Jobs. Some MCL commands are executed via internal CP actions

(e.g., assignment) while others cause the CP to invoke external
programs. This latter category includes a program or function call
and a script invocation. A command in this category is referred to
as a job. Each invoked program has associated with it a context
object, which can be referenced to control the program's execution
and determine its status.

CONTEXT OBJECT NAMES: Each background task creates, within the
CP's context object, a composite object whose name corresponds to the
task name. Within this composite object, the task creates a context
object for each program it invokes. The name of each context object

27

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

-~ -I

is equivalent to the name of the invoked program. If the same
program is subsequently invoked within the same task, its context
object name is of the form "program nameX", where X is an integer
starting from 2 and incremented for iach repeated invocation of the
program within the task. For example, the commands:

_ COMPILE MYFILE LIB=>MYLIB -&

T4 executing

<<COMP>> BEGIN COMPILE MYFILE

1/ COMPILE YOURFILE END -&

COMP executing

would cause the creation of composite objects named ".T4' and
".COMP", and context objects named ".T4.COMPILE", -.COMP.COMPILE- and
".COMP.COMPILE2'.

Foreground CP execution can be thought of as a task object named
"Tl" which interacts with the user and executes commands
synchronously. Context objects for any foreground programs are thus
created in the composite object ".Tl". The pre-defined CP variable
%FCONTEXTS contains a concatenated list of context object names
created in ".Tl" for the last foreground job. For example:

: COMPILE MYFILE LIB=> MYLIB

: %FCONTEXTS

.T1.COMPILE

The pre-defined CP variable %ACTIVE CONTEXTS contains a concatenated
list of context object names for alf active programs.

JOB CONTEXT OBJECT ATTRIBUTES: A program's context object has
various attributes that give information about the program's
execution, as shown in Table 3.2. The context object may be treated
as a database object for the purpose of referencing these
attributes.

28

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

, I _ _-.

TABLE 3.2 JOB ATTRIBUTES

Attribute Possible
Name Values Meaning

TERMINATED "TRUE" Indicates whether the
"FALSE"

program's execution has

completed.

EXECUTION TIME a string describing Total execution time

a REAL for the program (defined

only if TERMINATED =

TRUE)

EXIT STATUS "OK", "CANCELLED" The program's exit
"INTERRUPTED", or
the name of an status (defined only if
unhandled exception

TERMINATED = "TRUE"

The pre-defined variables %EXECUTION TIME and %EXITSTATUS
contain the execution time and exit status-for the last foreground
job. If a program completes its execution with an exit status of
"OK", all database objects within its context object are deleted.

Examples:

- COMPILE MYFILE LIB =>MYLIB

: %EXIT STATUS

OK

: COMPILE YOURFILE LIB =>MYLIB -&

T7 executing

_ .T7.COMPILE' TERMINATED

FALSE

CONTROL COMMANDS: The MCL context object commands, describe
below, take as arguments a sequence of context object names or the
names of composite objects containing context objects, and perform
actions on the programs they represent.

29

LCINTEAMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 6611840

STOP: The STOP command is invoked to stop the execition of an
arbitrary executing background job. STOP takes as its argument one
or more context object names.

stop command ::= STOP job list

job-list :: job_name {separator jobname)

jobname ::= expression

START: The START command allows the user to restart the
execut-of a job suspended by a prior STOP command.

start _command ::= START job list

The specified program(s) resume their execution in the background.

CANCEL: The CANCEL command is invoked to terminate the
execution of one or more background jobs.

cancel-command ::= CANCEL job-list

STATUS: The STATUS command enables the user to query the status
of programs.

status-command ::= STATUS joblist

If a program within the job list is currently active, the user
is given the following information about its execution: execution
time, memory used, I/O count. If the program is terminated, its
total execution time and exit status are displayed.

Examples:

: <<F>>FLIGHTSIM -I LANDER -&

-) F executing
: STOP F.FLIGHTSIM

V DEBUG .F.FLIGHTSIM

debugging

START .F.FLIGHTSIM
T STATUS .F.FLIGHTSIM

status information

_ CANCEL .F --all context objects
--within .F, i.e,
--.F.FLIGHTSIM and
--. F.LANDER

30

INTERMETRICS INCORPORATED a 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 681-1840

EXEC: The CP normally reads user-typed strings and interprets
them as commands. The CP is also capable of interpreting data as a
command, via EXEC.

exec-statement EXEC expression

EXEC takes as its argument an expression that must yield a string
value that is recognizable as one or more MCL commands. For
example:

%A := "COMPILE MYFILE LIB=>"

EXEC %A & MYLIB -- the command COMPILE MYFILE LIB=>MYLIB is

-- executed

EXEC %A & YOURLIB -- COMPILE MYFILE LIB=> YOURLIB

EXEC's can be nested. For example

%A:= "EXEC ""BEGIN COMPILE MYFILE;"" & %B &""MYFILE END->.TMP"""

%B:= LIST

: EXEC %A -- BEGIN COMPILE MYFILE; LIST MYFILE END ->.TMP

%B:= DELETE

_ EXEC %A -- BEGIN COMPILE MYFILE; DELETE MYFILE END ->.TMP

(1) Nested CP's. When the user logs in to the MAPSE System, the CP
may be invoked on his behalf. This CP is capable of invoking an
arbitrary program, including the CP itself. For example:

CP

- This prompt is typed by the nested CP.

The user may then issue commands to the invoked CP, which is referred
to as a nested CP. The nested CP has its own context object,and any
changes made to variables in the nested CP are not reflected in the
invoking CP.

If a nested CP session is terminated by the CP commands RETURN
or SUSPEND, control is returned to the invoking CP. If the LOGOFF
command is issued, the MAPSE session is terminated (including the
invoking CP).

A nested CP inherits the standard input and output of the
invoking CP. It reads commands from its standard input, and commands
may in turn read from standard input or write to standard output as
part of their execution. As with any invoked program, a nested CP's
I/O may be redirected via -> or -<. If the CP's standard input is

31

INTERMETRICS INCORPORATED @ 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

not the teletype an end-of-file is equivalent to RETURN. For

example, if a database object CPINFILE contained the text.

FOR %I IN l..5 LOOP GET%A; COMPILE%A; LIST%A END LOOP;

MYFILE YOURFILE Fl F2 TESTFILE -- This data in
-- standard input will be read
-- by GET

the user might type

: CP -< CPINFILE

The CP can optionally be supplied with a string which is to
serve as its standard input, via the parameter INPUTSTRING. For
example:

: CP INPUT STRING => "COMPILE MYFILE; %EXIT STATUS"

Since the CP is an ordinary tool, it can be invoked from any other
program. The INPUT STRING parameter provides a convenient means of
invoking the CP withIn a program, specifying to it the command(s) it
is to execute and data for those commands.

(m) CP Scripts. A script is a sequence of CP commands stored in a
database object. It is functionally equivalent to a linked
executable program in terms of invocation syntax, help information
and parameter passing. Any command within the script may read from
standard input or write to standard output. For example, if a script
named "SIM" contained the text.

"HOW MANY TIMES SHOULD THE SIMULATION BE RUN?"

GET %TIMES

For %I IN l..%TIMES LOOP

FLIGHTSIM OPTION=>FAST LEVEL=>3

END LOOP

the user might type

: HELP SIM

help text

: SIM

32

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

HOW MANY TIMES SHOULD THE SIMULATION BE RUN?

10
-- The script has completed its execution.

A script differs from an input file for a nested CP in that it
contains only commands. The data for these commands comes from
standard input, not the script. This is in keeping with the model of
scripts as equivalent to linked executable programs.

A script can have its I/O redirected or be executed in the
background. For example, if a database object "SIMIN" contained the
text "10", the user-might type:

: SIM -< SIMIN -&

A script's exit status and execution time are available to the user
in a manner identical to that for programs. For example:

: SIM -< SIMIN

: %EXIT STATUS

OK

A script is terminated when end-of-file is reached, or when a

RETURN, LOGOUT or SUSPEND command is encountered.

SUBPROGRAM SIMULATION: A script may receive IN para eter values
and return updated OUT parameter values if it contains subprogram
simulation command.

subprogram simulation statement

subprogramspecification IS subprogramsimulation body

subprogram simulation body ::= BEGIN command-input END [identifier)

subprogramspecification::=

PROCEDURE identifier [formalpart] I

FUNCTION identifier [formalpart] RETURN subtypeindication

formalpart::=(parameterdeclarationisemicolon parameterdeclaration))

parameter leclaration::=

CP identifier list :mode subtype indication [:=expression]

CP identifier list::= variable {, variable)

mode::= [IN] I OUT I IN OUT

subtypeindication::= INTEGER I REAL I BOOLEAN I STRING

33

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

... 1 -o--r -

The subprogram simulation command simulates the execution of a
parameterized Ada subprogram. It consists of a subprogram
specification that gives parameter information, and a subprogram
simulation body, which contains CP commands to be interpreted in order
to simulate the subprogram's execution.

The subprogram specification is similar to an Ada subprogram
specification [G-3, 6.1]. It may specify either a procedure or a
function. Parameter declarations are separated by semicolons.
Parameters and function return values must be of one of MCL's
pre-defined types (Sec. 3.2.1.2). Each formal parameter name must
follow the format of a CP variable. An example of a subprogram
simulation statement is:

Procedure COMPILEANDLIST (%FILE:STRING;
%LIB: STRING;
%COMPILESTATUS: out STRING)

IS
BEGIN
%DEBUG:= "LOOP GET %C; EXEC %C;END LOOP"
COMPILE %FILE LIB=>%LIB
%COMPILE STATUS := %EXIT STATUS
EXEC %DEBUG --reads and executes user

--commands until an EXIT command.
-- allows the interactive user to
--examine script variables, etc.

IF %COMPILESTATUS = OK THEN LPT %FILE
END

If this text were placed in a database object named COMPLIST,

the CP user could invoke it by typing

COMPLIST MYFILE MYLIB

Treatment of parameters is identical to that for program
invocation. The script receives parameters and performs type
checking based on the parameter specification. If an actual
parameter is not of the proper type, and cannot be implicitely
converted to the proper type, the script's execution is terminated.
Otherwise, the script performs the commands in its subprogram
simulation body, and returns updated values of OUT parameters. If a
script describes a function, the function return value must be
specifed a RETURN command. As in program invocation, default OUT
parameters are generated on behalf of the user. In the example
above, a variable named %COMPILE ERRORS would be generated.

AFFECTING THE CP'S ENVIRONMENT: A script is functionally
equivalent to a program, and cannot directly modify the invoking CP's
environment. For example, any variables declared in a script cannot
be subsequently referenced in the invoking CP. The user may specify
that the current CP should execute a sequence of MCL commands
contained in a database object via the EXEC command. For example,
if a database object named "VARIABLES" contained the text:

34

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

__________. q -

4 %MYLIB ADALIB.YOURLIB.MYLIB

%MYFILE ADALIB.SYSLIB.TESTFILE

the user might type

: EXEC CONTENTS(VARIABLES)

*: --variables defined in VARIABLES are now visible

: --in the current environment

%MYLIB

ADALIB.YOURLIB.MYLIB

3.2.1.2. Language Elements

(a) Lexical Elements. CHARACTER SET : Identical to Ada [G-3, 2.1].
This includes a basic graphic --cTaracter set, as well as other
characters from the ASCII graphics set. Any command can be expressed
using only the basic character set. Any lower-case letter is
equivalent to the corresponding upper-case letter except within
character strings and unquoted strings.

LEXICAL UNITS: An MCL input stream is a sequence of lexical units.
The lexical units are identifiers (including reserved words), numeric
literals, character literals, strings, delimiters, and comments.

A delimiter is either one of the following special characters in
the basic character set:

one of the following compound symbols:

> .. := /= >= <= -> -< -I -&

or the character:

* from the ASCII graphics set. Adjacent lexical units may be separated
by spaces or by passage to a new line. An identifier or numeric
literal must be separated in this way from an adjacent identifier or
numeric literal. Spaces must not occur within lexical units, except
within strings and comments. Each lexical unit must fit on one line.
(G-3 Sec. 2.2].

IDENTIFIERS: MCL identifiers are identical to Ada identifiers
[G-3, 2.3]. As in Ada, identifiers differing only in the use of
corresponding upper and lower case letters are considered to be the
same. Examples:

INTl Ada LRM

35

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

NUMERIC LITERALS: There are two classes of numeric liter-is:
integer literals and real literals. Integer literals are the literals
of the MCL type INTEGER. Real literals are the literals of the MCL
type REAL. As in Ada, isolated underscore characters may be inserted
between adjacent digits of a decimal number, but are not significant.
[G-3,2.4]. The conventional decimal notation is used. Real literals
are distinguished by the presence of a decimal point.

An An exponent indicates the power of 10 by which the preceding
number is to be multiplied to obtain the value represented. An
integer literal can have an exponent; the exponent must be positive
or zero.

Examples:

12 0 123_4561E6 --integer literals

12.0 0.0 0.456 3.14159_26 --real literals

12.34E-4 --real literal with exponent

CHARACTER STRINGS: Identical to Ada [G-3, 2.6].

Examples:

"i -- empty string

"ABC"

--a single included string bracket character

DATABASE LITERALS: Database literals name database objects.
There are two classes of database literals: partition specifiers and
object names [1-3, 3.2.11. The user may specify database literals
using full attribute value notation or shorthand positional notation
The BNF syntax for a database literal is given below:

database-literal ::= partition I objname

partition ::= [.id or av list or star{.id or av list or star

objname ::= [.]id oravlist {.id or av list}

id or av list or star::= identifier I attribute value list

id or av list ::= identifier I attribute value list

attribute value list ::= (attribute association
- -(comma attribute association}

attribute association ::= [formal attribute name=>]expression

formal attribute name :: identifier

Notice that an identifier is a database literal.

36

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 (6171 661-1840

The first character of a database literal indicates the desired
window. If the first character is a ".", the database literal is
rooted in the CP's context object. Otherwise, the database literal
is rooted in the CURRENTDATA window associated with each user via
the KAPSE.

A database literal beginning with a "." has different meanings
to different program invocations, since each invocation has its own
context object. However, each invoked program does automatically
receive a window on the context object of its invoker, its invoker's
invoker, and so on, back to the first program invoked by the system
initiator. Therefore, a user-typed database literal beginning with a
"."U automatically has the name of the window on the CP's context
object appended to it by the CP. This process, referred to as
normalizing the database literal, allows the literal to be passed to
an arbitrary invoked program without changing its meaning.

The CP's context object is automatically deleted at the
conclusion of the CP session. Any database object whose name begins
with a "." is thus a temporary object that will be deleted along
with the context object. For example:

TEST -- a database object named "TEST"
-- located in the CURRENTDATA window

.TEST -- a temporary database object named "TEST"
-- If the window on the CP's context
-- object were named
-- "F4", this database literal would be
-- normalized into ".F4.TEST"

FLIGHT.SIM.* -- a partition

FLIGHT.(RELEASE=>3,MODULE=>STICK) --attribute value list
-- notation

COMMENTS: identical to Ada.

Examples:

-- comments have no effect on the meaning of commands;
-- their sole purpose is the enlightenment of the human
-- reader
-- [G-3, 2.7)

RESERVED WORDS

The following keywords are reserved in MCL, and may not appear
as the name of a program or script to be invoked. However, they may
appear as identifiers anywhere else in the command line:

TRUE, FALSE,GET,PUT,IF,THEN,ELSIF,ELSE,BEGIN,END,FOR,WHILE,LOOP,
EXIT,RETURN,LOGOUT,SUSPEND,RESUME,ABORT,WAIT,HELP,SET INPUT,
SET OUTPUT,PROCEDURE,FUNCTION,EXEC,STOP,START,CANCEL,STATUS,
LIST VARS.

37

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

(b) Types. MCL contains no facility for declaring types. A CP
liter st be one of the following pre-defined types:

1. INTEGER - This pre-defined type is implemented as in Ada
[G-3, 3.5.4]. INTEGER values are expressed as integer
literals.

2. REAL - This pre-defined type describes floating point real
numbers. Its Ada declaration is

TYPE REAL is digits NUMDIGITS

where NUM DIGITS is within the range of the most accurate
numeric t 7pe supported by the implementation. REAL values
are expressed as real literals.

3. STRING - The pre-defined type STRING denotes an
unconstrained, one-dimensional array of characters. Its Ada
declaration is

TYPE STRING is array (NATURAL range<>) of CHARACTER;

STRING values are expressed as character strings.
Catenation is a pre-defined operator for strings; it is
represented as &. The relational operators <, <=, >, and >=
are defined for strings, and correspond to lexicographical
order.

4. BOOLEAN - As in Ada, there is a pre-defined enumeration type
named BOOLEAN [G-3, 3.5.31. It contains the two literals
FALSE and TRUE ordered with the relation FALSE<TRUE.

5. UNQUOTED STRING - The pre-defined type UNQUOTED STRING
denotes a string that has the lexical form of a database
literal (with the exception of TRUE and FALSE, which are
BOOLEAN enumeration literals).

Unlike an MCL string, an unquoted string does not have to be
surrounded by string bracket characters. This provides the
user with a convenient means of specifying identifiers or
database object names without having to quote them, as in

HELLO -- identifier

A.B.C --database object name

A unquoted string is similar to an Ada enumeration literal
in this respect. Unlike an enumeration literal, however,
the list of legal unquoted strings is dynamically extendable
to include any arbitrary identifier or database name.

38

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

(c) Expressions. MCL expressions are a subset of Ada expressions,
with extensions for dealing with unquoted strings. See Appendix I
for MCL expression syntax. Note that a carriage return cannot appear
between an operand and an operator of an expression, since a single
operand it itself a valid expression.

Examples of expressions:

HELLO --unquoted string

HELLO & GOODBYE --HELLOGOODBYE

%Q OR (%V AND FALSE) -- variable names begin with a '%'

2 * 3. + 5 -- 11

OPERANDS: An operand of an expression may be a literal, a
function call or a variable.

A literal denotes an explicit value of any legal MCL type.
Examples of literals:

4 -- integer literal

4.0 --real literal

TRUE --Boolean literal

"OFF" -- string literal

OFF -- unquoted string

A function call returns a value which can be used as an operand.
A function may have its I/O redirected via -I, -< or ->

An MCL variable name always begins with a '%':

variable -:= %identifier[(simple_expression)I

A variable takes on a value via the assignment statement.

TABLE 3-3 shows the set of CP variables that are defined and
initialized at CP startup time. Some of these control CP options;
these options may be modified by assigning a new value to the
variable. Others are used as convenient placeholders for strings
generated during job invocation.

39

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Table 3-3 -- Pre-defined CP Variables

INITIAL
NAME TYPE PURPOSE VALUE

%PROMPT STRING Defines the CP user
prompt.

%FJOBS STRING The names of all jobs ""

within the last job command
executed in the fore-
ground.

%EXECUTION TIME REAL The execution time 0.
of the last completed
foreground job command.

%EXITSTATUS STRING The exit status of left

the last completed
foreground job command.

%LASTTASK STRING The name of the last
background task.

%INFORM DEFAULT OUT BOOLEAN If TRUE, the user is " " FALSE
informed of each default OUT
parameter variable generated.

%AUTOREDEFINE BOOLEAN IF TRUE, a default FALSE
OUT parameter will replace
an already existing variable
with the same name.

%ACTIVE JOBS STRING A list of all currently
executing jobs.

The MCL user does not explicitly declare variables. Rather, a
variable is implicitly declared by its first use. Its value is a
string, with implicit conversions performed as required. The
pre-defined command LIST VARS prints to standard output a list of all
CP variables and their current values, separated by blanks. This is
useful for determining the current state of all CP variables.

list vars statement :: LIST VARS

A variable's value is made up of one or more lexical elements. The
user may refer to a lexical element within a variable's current value
by means of the substring operator. This operator is encoded

40

INTERMETRICS INCORPORATED 9 733 CONCORD AVENUE l CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

as a parenthesized expression immediately following the variable name
(similar to an Ada indexed component [G-3 4.1.11). The expression
indicates the requested substring's lexical position. The result of
the substring operation is a string literal.

If the substring operator's value is greater than the number of
lexical units in the variable, the operator's value is the empty
string "". For example, if

%VAR := "this is a character literal"

then %VAR(5) refers to the substring "literal".

The fundamental function LEXICAL LENGTH returns the lexical
length of a string. This is useful for 'oops, as in

: -- loop to list and delete all objects in a library
%DIR := MYLIB'DIRECTORY -- list of all object in MYLIB

: FOR %I IN 1..LEXICAL LENGTH(%DIR) LOOP
1/ LIST %DIR(%I) -- successive words within the variable %DIR
27 DELETE %DIR(%I)
37 END LOOP

OPERATORS: MCL operators, a subset of Ada, are divided into
five classes. They are given below in order of increasing
precedence.

LOGICAL OPERATOR ::= AND I OR

RELATIONALOPERATOR :: I < I<= I > I >=

ADDING OPERATOR :: + & - &

UNARYOPERATOR + I - I NOT

MULTIPLYING OPERATOR * I /

Expression evaluation follows the same rules as Ada [G-31.

Expressions can be surrounded by parentheses to impose a specific
order on operators. Table 3-4 Summarizes MCL operators.

41

INTERMETRICS INeORPQRATED. 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1640

Table 3-4: MCL Operators

Operator Operation Operand Type Result Type

(Logical)

AND conjunction BOOLEAN BOOLEAN
OR inclusive BOOLEAN BOOLEAN

disjunction

(Relational)

= /= equality and Any MCL Type BOOLEAN
inequality

< <= > >= test for Any MCL type BOOLEAN
ordering

(Equality for reals is determined as in Ada [G-3 4.5.8])

(Adding)

+ addition Integer or real same type

subtraction Integer or real same type

& catenation String or un- string
quoted string

(Unary)

+ identity Integer or real same type

negation Integer or real same type

NOT logical BOOLEAN BOOLEAN
negation

(Multiply-
ing)

* multiplication Integer or real same type

/ division Integer or real same type

The membership tests IN and NOT IN test whether a value is
within a specified range. The value and the range bounds can be any
MCL type but must be of the same type. These operators return a
value of type BOOLEAN.

Examples:
%N NOT IN i..10

42

INTERMETRICS INCORPORATED •733 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 •(817) 861-1840

"HELLO" IN %A..%B

TEST1 IN %A..TESTY

TYPE CONVERSIONS. Any unquoted strings within an expression
are implicitly converted to strings. In the following discussion ,
the term STRING refers to both strings and implicitly converted
unquoted strings.

Each of the operations described expects its operands to be of
specific types. If an operand is not of the proper type, the CP
attempts to implicitly convert it into a value of the proper type.
If the conversion fails, an error message is printed. This
conversion only occurs between closely related types, as shown in
Table 3-5.

Table 3-5: Implicit Type Conversions

Proper
Operand Type Closely Related Types

BOOLEAN STRING(value must be "TRUE" or "FALSE")

INTEGER STRING(value must be the image of an integer)
REAL (truncated to integer)

REAL STRING(value must be the image of a
real number)

INTEGER

STRING BOOLEAN

REAL

INTEGER

For operators whose operands can be one of several different
types, implicit conversion is attempted in the following order:
BOOLEAN, INTEGER, REAL, STRING. This ordering implies that: (1)
relational operators and catenation can be applied to operands of any
type, since any type can be implicitly converted to a string; and (2)
the result of adding, subtracting, multiplying or dividing an integer
and a real is an integer. Examples of implicit conversion:

FLIGHT & SIM -- "FLIGHTSIM"

TRUE AND "FALSE" -- FALSE

3+"5" --8

2.3 + 3 --5

"HELLO" & 2.0 --"HELLO2.0"

43

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE a CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

L --

7-..

DATABASE ATTRIBUTES: In addition to the subset of Ada
operators presented above, MCL has an additional operator, used to
determine an attribute of a database object.

attribute ::= objname'attributename

The object and the attribute name may be specified as arbitrary
expressions, including unquoted strings or variables. The result of
the operation is a string describing the value of the specified
attribute for the specified database object.

Examples:

MYLIB'MEMBERS

%X'TERMINATED

%X'%Y

3.2.2 Processing

The CP parses a user-typed command into a parse tree (via
PARSE), and passes this tree to the TREE INTERPRET task to be
executed. TREEINTERPRET may:

1. update CP variables (the VARIABLE task);

2. execute a program (JOB);

3. evaluate an expression (the EXPRESSION package);

4. manipulate script parameters (the SUBPROG SIMULATE package);

5. instantiate other TREE INTERPRET tasks to execute co-routines
(the ALLOCATEINTERPRETER task); or

6. execute a command in the background (the BACKGROUND task).

Errors in user input are handled by the ERROR package.

3.2.2.1 The CP Driver (DRIVER)

The CP Driver is the main program of the CP. It performs
various initializations, then loops to interpret MCL commands. At
the conclusion of command processing, various postprocessing is
performed.

(a) Specification.

with GLOBALS, VARIABLE, BACKGROUND, ALLOCATEINTERPRETER,

INPUTSTREAM, PARSE, ERROR

procedure DRIVER;

44

LINTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(b) Dependencies.

VARIABLE, BACKGROUND, ALLOCATE INTERPRETER -These global tasks
are elaborated in DRIVER's declarative part.

GLOBALS - This package contains types used to refer to an active
TREEINTERPRET task.

INPUT STREAM -Entries in this package are invoked to initialize
the CP's command input stream.

PARSE -This procedure is invoked to parse a user-typed MCL
command.

ERROR -Entries in this package are invoked to handle errors.

(c) Algorithm. DRIVER performs the following operations:

1. Since several commands may be interpreted simultaneously
(for example co-routines and background commands), global CP data
must be managed by CP-wide tasks. These include CP variables (the
VARIABLE task), TREE INTERPRET tasks (the ALLOCATE INTERPRETER task)
and background task-names (the BACKGROUND task). - These tasks are
therefore activated during the elaboration of DRIVER's declaration
part.

2. If the CP invocation is, in fact, a resumption of a
previously suspended CP session, the CP's context object has an
attribute VARIABLE VALUES, which describes the values of CP variables
when the CP was suspended (see the SUSPEND EXCEPTION below). If this
attribute is present, DRIVER invokes the VARIABLE task entry SET to
initialize each variable in VARIABLEVALUES.

3. The CP's parameters are read from the context object.
Possible parameters are:

SCRIPTNAME - The database object from which the CP is to
read commands. If supplied, the CP is
processing a script.

SCRIPT PARMS - This string describes IN parameters for any
subprogram simulation statements. The
SUBPROG SIMULATE package entry IN PARAMETERS
is iivoked to process these SCRIPT
parameters.

COMMANDSTRING - a string to be executed by the CP.

4. Any commands contained in startup files are interpreted.
These include a system-wide startup file (containing intializations
of pre-defined variables), and "CPSTARTUP," which contains
user-defined CP startup commands.

5. The CP determines the input stream from which it is to
read commands, as follows: If either SCRIPTNAME or COMMANDSTRING

45

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

is supplied, it specifies the command input; otherwise, the CP reads
commands from standard input. In any case, INPUTSTREAM.CREATE is
invoked to initialize the input stream.

6. The CP activates a TREEINTERPRET task via
ALLOCATEINTERPRETER.ALLOC

7. DRIVER loops to process MCL commands from the input
stream. These commands may raise exceptions, which are caught and
handled by DRIVER. The algorithm for this loop and exception
handlers can be stated as follows:

<<MORE>>

while not EOF loop

Invoke BACKGROUND.POLL before reading each
command to determine if any background tasks
have completed.

Invoke PARSE to parse the next command from
the input stream into a parse tree.

Pass the parse tree to the TREE INTERPRET task
to be interpreted.

end loop;

if EOF then
if operating in interactive mode then goto MORE end if

end if;

exception

when COMMAND ERROR =>

Flush tokens until newline;
goto MORE;

when LOGOFFEXCEPTION =>

Perform user and "system-wide shutdown commands;
Invoke the KAPSE function LOGOFF;

when SUSPEND EXCEPTION =>

Create an attribute VARIABLE VALUES in the CP's
context object, which contains a concatenated list
of variable names and values, and terminate the
CP session.

when RETURN EXCEPTION =>

Perform user and system-wide shutdown commands;
Terminate the CP session;

46

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

3.2.2.2 Input Stream Package (INPUT-STREAM)

The CP reads and parses commands from an input stream.

This input stream may either be an open file or a string. The Input
Stream Package contains an entry to create an input stream.

(a) Data Structures. An input stream is described by a variant
record, STREAM, whose field describes either an open file or a
string.

(b) SPecification.

with GLOBALS package INPUTSTREAM is

type STREAM STRING is access STRING;
type STREAM-TYPE is (FROM STRING, FROMFILE);
type STREAM_(FROM: STREAMTYPE) is

record
case FROM is

when FROM STRING => STR: STRING PTR
when FROMFILE => FILE: TEXT__O.INFILE;

end case;
end record;

procedure CREATE(FILEORSTRING: STREAMTYPE;
FILE: TEXT IO.IN FILE;
STR: STRING PTR -
NEW STREAM: in out STREAM);

end INPUTSTREAM;

(c) Dependencies. GLOBALS - contains STRING PTR's declaration.

(d) Entries.

CREATE STREAM. This entry initializes a STREAM record. If the
stream is described by a string, the string is concatenated with an
end-of-stream marker.

3.2.2.3 Lexical Analyzer

The lexical analyzer reads lexemes from a specified input
stream. Its algorithm is described in [1-2, 3.2.2.2].

(a) Specification.

with INPUTSTREAM, GLOBALS

procedure LEXICALANALYZER(INSTREAM: INPUTSTREAM;

TOKEN: out STRINGPTR);

47

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (6171 661-1840

t .-

(b) Dependencies.

INPUT STREAM -Data structures in this package define the type
of an inpuE stream.

GLOBALS - contains STRING PTR's declaration.

(c) Algorithm. The lexical analyzer reads and returns the next
lexeme from INSTREAM.

3.2.2.4 The MCL Parser (PARSE)

The MCL Parser parses a command from an input stream.

(a) Specification.

with LEXICAL ANALYZER, ERROR, INPUT STREAM
procedure PARSE(S: in STREAM;

T: out P TREE);

(b) Dependencies.

INPUT STREAM -Data structures in this package define the type
of an input stream.

LEXICAL ANALYZER -This procedure is invoked to read lexemes
from an input stream.

ERROR -Entries in this package are invoked to handle errors.

(c) Data Structures. A command is parsed via recursive descent into
a Diana-like parse tree allocated from the heap. This tree may
describe an MCL statement, as well as any notation to be applied
over the statement. This latter category includes:
REDIRECT INPUT(-<), REDIRECTOUTPUT(->), PIPE(-I) and
BACKGROUND(-&).

(d) Algorithm. PARSE takes as its IN parameter the input stream
from which the command is to be read. It reads tokens from the
stream (via the Lexical Analyzer), and forms a parse tree; its goal
symbol is a complete MCL statement.

PARSE also contains an exception handler for the interrupt
exception, which causes the parse tree to that point to be ignored.

3.2.2.5 The Parse-Tree Interpreter (TREE INTERPRET)

The Parse-Tree Interpreter is the heart of the CP. It is
activated to process user-typed commands, to execute a command in
the background, and to execute commands as coroutines.

48

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 a (617) 661-1840

j -,

(a) Specification.

with JOB, VARIABLE, ERROR, ALLOCATE INTERPRETER, GLOBALS,
PARSE, SUBPROG SIMULATE, EXPRESSION, BACKGROUND

task TREE INTERPR-ET is
entry INITIALIZE(CMD STANDARD INPUT: TEXT IO.IN FILE;

CMD-STANDARD-OUTPUT: TEXTIO.OUT_FILE;
CONTEXT CO: STRING PTR);

entry NEXT TREE(TREE : PTREE);
end TREEINTERPRET;

(b) Dependencies.

ERROR -Entries in this package are invoked to handle errors.

VARIABLE -Entries in this task are invoked to manipulate CP
variables.

JOB -This procedure is called to invoke a program.

BACKGROUND -Entries in this package are invoked to interpret a
command in the background.

ALLOCATE INTERPRETER -Entries in this package are invoked to
activate and deactivate TREEINTERPRET tasks for co-routines.

GLOBALS -This package contains data structures used to refer to
an active TREEINTERPRET task.

PARSE -This procedure is invoked to parse the string argument
of an EXEC statement.

SUBPROG SIMULATE -Entries in this package are invoked to read
and write parameters from the CP's context object.

EXPRESSION -Entries in this package are invoked to evaluate an
expression.

(c) Data Structures. TREE INTERPRET maintains two variables,
COMMAND STANDARD INPUT and COMMAND STANDARD OUTPUT, which correspond
to the standard -nput and output fur any coimmand it interprets. An
executing TREE INTERPRET task may modify these values without
affecting the standard input or output of commands interpreted by
any other TREE INTERPRET task. TREE INTERPRET also maintains a
composite object located in the CP's coiitext object, within which it
creates context objects for any programs it invokes.

(d) Entries. INITIALIZE. This entry initializes the standard input
and output for any command executed by TREE INTERPRET.

Additionally, a composite object, whose name is supplied as the IN
parameter CONTEXTCO, is created.

NEXT TREE. This entry serves as a rendezvous point where
TREEINTERPRET receives the next parse tree to be interpreted.

49

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

- o I_*

(e) Algorithm. As each parse tree is received, it is passed to a
procedure INTERPRET within the task body. INTERPRET performs
various actions depending on the command it is to effect, as
follows:

PROGRAMORSCRIPT CALL: INTERPRET generates a unique context
object name within CONTEXT CO. This name is passed to the JOB
procedure, which creates the context object and executes the program
or interprets the CP script.

ASSIGNMENT: The assignment is performed.

RETURN, SUSPEND or LOGOFF: The POLL entry of the BACKGROUND
task is invoked to determine if any background tasks are active, in
which case the user is informed and the command is ignored.
Otherwise, an appropriate condition is raised to be caught by
DRIVER.

SET INPUT, SET OUTPUT: The appropriate internal variable
(COMMAND STANDARD INPUT or COMMANDSTANDARD OUTPUT) is reset to
indicate the stanaard input or output of any subsequent commands
interpreted by TREE INTERPRET.

ABORT: The B ABORT entry of the BACKGROUND task is invoked to
abort the specified-background task.

WAIT: The WAIT entry of the BACKGROUND task is invoked to wait
for the completion of the specified background task.

EXPRESSION: The value of the expression is written to
COMMANDSTANDARDOUTPUT.

EXEC: The expression argument is evaluated into a string,
which is converted into an input stream via INPUT STREAM.CREATE.
The resulting STREAM is parsed (by PARSE) into a parse tree.
INTERPRET then recurses to interpret that parse tree.

IF: Successive conditions are evaluated until one evaluates to
TRUE. INTERPRET recurses to execute the subtree associated with
that condition. If none of the conditions evaluate to TRUE, no
subtree is executed.

LOOP: The iteration clause is evaluated and, if it is TRUE,
INTERPRET recurses to execute the loop body. This process is
repeated until the iteration clause evaluates to FALSE, or until a
command within the loop terminates the loop (EXIT), or the CP
session (SUSPEND, LOGOFF, RETURN).

EXIT: Execution of the loop is terminated.

SUBPROGRAM SIMULATION: Parameter values are initialized via
the GET PARAMETERS entry of the SUBPROG SIMULATE package. INTERPRET
recurses to execute the associated block of commands, then invokes
SUBPROG SIMULATE.PUT PARAMETERS to write the values of updated OUT
parameters back to the context object.

50

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1842

m
BLOCK: INTERPRET recurses to perform the commands within the

block.

REDIRECT INPUT (-<), REDIRECT OUTPUT (->): INTERPRET opens (for
input) or creaites (for output) the-specified database object, resets
the appropriate internal variable (COMMAND STANDARD INPUT or
COMMAND STANDARD OUTPUT) to indicate that standara input (Zutput) for
commands should Se the database object, A6 recurses to interpret
commands. When all commands have been processed, the database object
is closed, and standard input(output) for commands reverts to its
previous value.

PIPE: The ALLOC entry of the ALLOCATE INTERPRETER task is
invoked to initiate a TREE INTERPRET task for each command within a
pipeline. Each TREE INTERPRET task is passed a subtree describing
the command within the pipeline it is to execute. INTERPRET then
waits for all these TREE INTERPRET tasks to complete, at which point
ALLOCATEINTERPRETER.DEALLOC is invoked to deallocate them.

BACKGROUND (-&): The parse tree is passed to the BACKGROUND
task to be interpreted.

3.2.2.6 The Globals Package (GLOBALS)

This package contains an access type to the TREE INTERPRET
task, which serves as a means of referring to it in various CP
modules.

(a) Specification.

with TREE INTERPRET
package GLOBALS is

type STRING PTR is access STRING;
type INTERPRETER is limited private;

private
type INTERPRETER is access TREE-INTERPRET;

end GLOBALS;

3.2.2.7 The Interpreter Allocator Task (ALLOCATE INTERPRETER)

The Interpreter Allocator task maintains a pool of
TREE INTERPRET tasks.

(a) Specification.

with TREE INTERPRET, GLOBALS
task ALEOCATE INTERPRETER is

entry ALLOC (ACTIVATED INTERPRETER: out INTERPRETER);
entry DEALLOC(ACTIVATED INTERPRETER: INTERPRETER);

end ALLOCATEINTERPRETER;

~51

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE a CAMBRIDGE, MASSACHUSETTS 02138 9 (617) 661-1840

AL_ -dh 1

7'

(b) Dependencies. TREEINTERPRET -ALLOCATEINTERPRETER maintains a
pool ot these tasks.

GLOBALS -This package contains data structures used to refer to
an active TREEINTERPRET task.

(c) Data Structures.

The ALLOCATE INTERPRETER task maintains an array of access
variables to TREEINTERPRET tasks.

(d) Entries.

ALLOC. This entry activates a TREE INTERPRET task from the
pool.

DEALLOC. This entry aborts the specified TREE INTERPRET task
and returns it to the pool, from whch it may later be-reactivated.

3.2.2.8 The Background Task Manager (BACKGROUND)

A background command is processed by activating a
TREE INTERPRET task to interpret it. The Background Task Manager
controls the execution of background commands, and associates a
unique name with each background task.

(a) Specification.

with ALLOCATEINTERPRETER, GLOBALS, ERROR

task BACKGROUND is

entry START(COMMAND: P TREE;

COMMAND STANDARDINPUT: TEXTIO.INFILE;

COMMANDSTANDARDOUTPUT: TEXTIO.OUTFILE;

TASKID: out STRINGPTR);

entry WAIT(TASKID: STRINGPTR);

entry BABORT (TASKID: STRINGPTR);

entry POLL(ACTIVETASKS: out STRINGSTR);

end BACKGROUND;

(b) Dependencies.

ALLOCATE INTERPRETER -Entries in this package are invoked to
activate and 3eactivate a TREEINTERPRET task.

GLOBALS - This package contains data structures used to refer
to an active TREEINTERPRET task.

j52

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE ° CAMBRIDGE, MASSACHUSETTS 02138 ((817) 661-1840

ERROR - Entries in this package are invoked to handle errors.

(c) Data structures. BACKGROUND maintains a list of all
TREE INTERPRET tasks activated to process background commands, as
well-as the unique names of these tasks.

(d) Entries.

START. This entry is invoked to start the execution of a
command (specified via the IN parameter COMMAND) in the background.
ALLOCATE INTERPRETER.ALLOC is invoked to activate a new
TREE INTERPRET task. START generates a unique name for the task, and
passes this name, along with COMMAND STANDARD INPUT and
COMMAND STANDARD OUTPUT to the task's INITIALIZE entry. The task is
passed COMMAND via its NEXTTREE entry, and the user is informed of
the task name.

WAIT. This entry causes the CP to wait for the termination of
the specified background task before accepting subsequent user
commands.

B ABORT. This entry aborts the background TREEINTERPRET task
identTfied by TASKID.

POLL. This entry polls the status of all currently active
background tasks via conditional entry calls [G-3, 9.7.2]. If any
task is done (i.e. is ready to receive its next command), it is
deactivated via ALLOCATE INTERPRETER.DEALLOC, and the user is
informed that the background task completed.

POLL returns as it OUT parameter a concatenated list of names
of all currently active background tasks.

3.2.2.9 Job Invocation (JOB)

Some MCL commands are executed via internal CP actions, while
others are effected-by invoking a program. This latter category
includes a call on a linked executable progra, as well as a request
to interpret a CP script (which requires the implicit invocation of a
CP to interpret it). A request for program invocation is referred to
as a job. The JOB procedure effects job invocation.

(a) Specification.

with ERROR, VARIABLE, GLOBALS

procedure JOB(CONTEXTNAME: STRINGPTR;

TJOB: P TREE);

(b) Dependencies.

ERROR - Entries in this package are invoked to handle errors.

GLOBALS - contains STRINGPTR's declaration.

53

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 9 (617) 661.1840

VARIABLE - Entries in this task are invoked to manipulate CP
variables.

(c) Algorithm. JOB takes as its IN parameters a parse tree that
describes a job, and the name of the context object it is to create
for that job. JOB must:

1. create the specified context object;

2. write IN parameter values to the context object;

3. invoke the appropriate program;

4. wait for the program to complete; and

5. update OUT parameters modified during the program's
execution.

The IN parameter values to be written are contained in the parse
tree. The name of the program or script to be executed is expanded
(via the PROGRAM SEARCH LIST attribute of the CP's context object)
into a full database obTect name. If the category of that database
object indicates that it is a program, the program is invoked; if the

category indicates it is a text file, the CP is invoked to process
the script as its command input. EXECUTE waits for the program's
completion via the KAPSE call AWAIT PROGRAM, then updates OUT
parameters as follows:

The KAPSE call GET ATTRIBUTE is invoked to return a parameter
string. For each parame-er in the string, the parse tree is examined
to determine whether the parameter was specified by the user as part
of program invocation, either by position or by name. If so, the
parameter's actual name is, in fact, the name of a variable, which is
updated to contain the new OUT parameter value.

If the parameter was not specified by the user, a "default OUT
parameter" variable is generated. The value of this variable is set
to the OUT parameter's value.

If the parameter was supplied by the user but was not a variable
a warning is issued, and a default OUT parameter is generated, as

above. The program's exit status is computed, and, if it is "OK",
all database objects within the context object are deleted.

3.2.2.10 Subprogram Simulation Package (SUBPROGSIMULATE)

When the CP executes a subprogram simulation statement, it must
perform preprocessinc, to import parameters from its context object,
and postprocessing, to return updated OUT parameter values to the
context object.

It does so by invoking SUBPROGSIMULATE package entries.

(a) Data Structures. The SUBPROG SIMULATE package maintains a
private variable PARM STRING, which Fontains IN parameter values as
read by DRIVER.

54

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

(b) Specification.

with ERROR, VARIABLE, GLOBALS
package SUBPROG SIMULATE is

procedure IN PARAMETERS(PARM STRING: STRINGPTR);
procedure GET PARAMETERS(SPEC: P TREE);
procedure PUT- PARAMETERS(SPEC: P-TREE);

private
PARM STRING: STRING PTR;

end SUBPROGSIMULATE;

(c) Dependencies.

ERROR - ERROR package entries are invoked to handle errors.

VARIABLE - VARIABLE task entries are invoked to manipulate CP
variables.

GLOBALS -contains STRING PTR's declaration.

(d) Entries.

IN PARAMETERS. This entry is invoked by the DRIVER to store the
IN paramFeter string (as read from the CP's context object) in the
private variable PARMSTRING.

GET PARAMETERS. This entry is invoked to initialize IN
paramete values. It takes as its IN parameter a parse tree
describing a subprogram simulation statement.

The algorithm for GET PARAMETERS is as follows:

For each parameter association in the parse tree, a value is
obtained from PARM STRING (or from the parse tree, if a default value
was specified), and stored in a CP variable whose name corresponds to
the formal parameter name.

PUT PARAMETERS: This entry is invoked at the conclusion of
script processing, to write OUT parameter values to the context
object. The parse tree is scanned to build a new parameter string
containing updated OUT parameter values. If the script describes a
function, its return value is also placed in the string, which is
then written via the KAPSE call SET ATTRIBUTE. Finally, any CP
variables defined in GET PARAMETERS are-deleted.

3.2.2.11 Variable Task (VARIABLE)

The VARIABLE Task is responsible for maintaining CP variables.
It contains entries for defining a CP variable, assigning a value to
a CP variable, and fetching the current value of a CP variable.

(a) Data Structures. A variable is represented by a record
allocated from the heap containing the field VALUE, which describes
the value of the CP variable.

55

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

(b) Specification.

with ERROR, GLOBALS

task VARIABLE is

entry DEFINE (NAME:STRINGPTR);

entry SET (NAME:STRINGPTR;VALUE:STRINGPTR);

entry FETCH(NAME:STRINGPTR; VALUE: out STRINGPTR);

end VARIABLE;

(c) Dependencies.

ERROR-ERROR package entries are invoked to handle errors.
GLOBALS - contains STRINGPTR's declaration.

(d) Entries. DEFINE, FETCH and SET. These entries are invoked o
define a new CP variable, set its value and fetch that value. If a
referenced variable does not exist, an implicit declaration s
generated.

3.2.2.12 String Conversion Package (STRING-CONVERT),

During expression evaluation, it may be necessary to convert th
string value of an MCL variable into some other type required t)
perform a particular operation. In these cases, the STRING CONVERk
package is called upon to perform the necessary conversion.

(a) Specification.

with GLOBALS
package STRING CONVERT is
procedure TO INTEGER (STR:STRING PTR; VALUE:OUT INTEGER) f
procedure TO-REAL (STR:STRING PTR;VALUE:OUT REAL)
procedure TO-BOOLEAN (STR:STRING PTR;VALUE:OUT BOOLEAN)
end STRING CONVERT;

(b) Dependencies.

GLOBALS - Contains STRING PTR's declaration.

(c) Entries.

TO INTEGER, TO REAL and TO BOOLEAN: These entries are invoked
to convert a string value into- a value of type INTEGER, BOOLEAN cr
REAL. Each takes as its IN parameter the string to be convertedq.
Conversion is performed via the Ada VALUE attribute. If tte

conversion is successful (i.e., the DATA ERROR exception is ncit
raised), the converted value of the requesteJ type is returned as an
OUT parameter. Otherwise, an error condition is raise9.

56

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 (617) 6 1-1840

3.2.2.13 Operator Package (OPERATOR)

During expression evaluation, it may be necessary to perform a
pre-defined operation (such as addition or subtraction) on one or
more operands. The operator package performs such operations.

(a) Specification

with GLOBALS, STRING CONVERT
package OPERATOR is

function EVALUATE (OPERATOR:STRING PTR;
STRING1:STRING PTR;
STRING2:STRING PTR;

VALUE:OUT STRING PTR);

end OPERATOR;

(b) Dependencies.

STRING CONVERT -Entries in this package are invoked to convert a
string-into some other MCL type.

GLOBALS - contains STRING DTR's declaration.

(c) Entries.

EVALUATE. This entry is invoked to perform an arbitrary,
pre-defined operation on a group of strings. It takes as its IN
parameters the string argument(s) and an operation to be performed on
the string(s). It performs the operation, and returns as its OUT
parameter a string representing the result of the operation.

3.2.2.14 Expression Package (EXPRESSION)

The Expression Package is responsible for evaluating
expressions.

(a) Specification.

with ERROR, VARIABLE, JOB, OPERATOR, GLOBALS
package EXPRESSION is

procedure EVALUATE(TREE: P TREE;

VALUE: out STRINGPTR);

end EXPRESSION;

(b) Dependencies.

ERROR -ERROR package entries are invoked to handle errors.

VARIABLE -Entries in this task are invoked to fetch the value of
CP variables.

57

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

JOB -This procedure is invoked to effect a function call.

OPERATOR -Entries in this package are invoked to evaluate
operators encountered during expression evaluation.

GLOBALS -Contains STRING PTR's declaration.

(c) Entries.

EVALUATE. This entry is invoked to evaluate an arbitrary
expression. It receives as its IN parameter a parse tree which
describes an expression, and returns as it OUT parameter a string
describing the expression's value.

3.2.2.15 Error Package (ERROR)

The ERROR package contains facilities for printing error
messages and raising the COMMANDERROR exception (to be cauqht by
DRIVER).

(a) Data Structures. The ERROR package contains an enumeration type
named ERRORS that consists of an enumeration literal for each CP
error. Associated with ERRORS is a composite object containing
explanatory text to be printed for each error.

(b) Specification.

with GLOBALS
PACKAGE ERROR is

type ERRORS is -- a literal for each error type

(TERMINATOR EXPECTED, NOSUCHPROGRAM, . . .

procedure MESSAGE (ERROR NAME:ERRORS; MESSAGE STRING:STRINGPTR);

end ERROR;

(c) Dependencies.

GLOBALS - contains STRINGPTR's declaration.

(d) Entries.

MESSAGE -prints an error message. IN parameters are the error
name and an optional message string which should precede the error

text. If MESSAGE STRING is specified, MESSAGE prints it. (This

message string may, for example, be the name of the specific
user-typed token which caused the error.) MESSAGE then prints the

explanatory text associated with the error, and raises the
COMMAND ERROR exception.

58

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS02138 (617) 661-1840

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Testing of the Command Processor will be performed at three

levels:

1) Unit Testing

2) Integration Testing

3) Functional Testing

See the CPDP (TBD) for a detailed discussion of the methodology to

be used while constructing the MAPSE. The tests described below

will be repeated on both MAPSE Configurations, VM370 and
Perkin-Elmer 8132.

4.1.1 Unit Testing

Each subprogram package and task which makes up the CP program

will be unit tested. This involves constructing a specific

environment around the module to be tested, and then invoking it
with specific arquments. The actions that the module takes can then
be observed and compared with the expected actions.

Each fundamental program will also be unit tested.

4.1.2 Integration Testing

During integration testing, the CP modules will be integrated

one-at-a-time and tested with previous tested subsets of the votal

CP program. Additionally, fundamental programs will be integrated
with the CP program.

4.1.3 Functional Testing

A set of MCL commands will be developed which will verify that
the CP requirements contained in Section 3 of this Specification are

fully operational. The tests will be utilized interactively and in
script mode. The test results and the source code for the CP and
fundamental programs will be available for inspection. In addition,

portions of the test sequence may be exercised for demonstration

purposes.

59

INTERMETRICS INCORPORATED .733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

PAGE LEFT BLANK INTENTIONALLY

60

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETT 02j jj8jjjjO1-64

10.0 APPENDIX

10.1 BNF For MAPSE Command Language (MCL)

--LEXICAL ELEMENTS

upper-case-letter:= A IB IC ID IE IF IG IH II

JIKILIMINI0IP IQI RI S

I TI U IVIW I XI YI Z

digit : = 0 1 1 1 2 I 3 I4 I5 I 6 I 7 I 8 I 9

special-characters # % & I I(I) star I+

comma I-Idot I/Icolon Isemicolon

< > underscore Iparallel-bar

star *

comma <,

dot <.>

colon::<>

semicolon:=<;

underscore :: >

parallel-bar <1>

blank <

61

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

lower-caseletter a b Ic Id e If ig h i j

ik 1 J m n io p q [r [s it iu

Sv w x iy iz

other special characters
! [I question mark[@[[I/I] F i 'I {I }IJ

question-mark ::= <?>

identifier ::= letter{[underscorelletter or digit}
-- identical to ADA

letter or digit ::= letter I digit

letter ::= uppercase letter I lower case letter

numeric literal decimal-number

decimal number integer [.integer] [exponent]

integer digit{[underscore]digit}

exponent E [+] integer I E - integer

character string ::= "{character)"

character letter or digit I special-characters 1 blank 1
other special-characters

databaseliteral ::= partition I objname

partition ::= [.]id or av list or star{.id or av list or star)

objname ::= [.]id or av list{.id or av list)
it

id or av list or star identifier i attribute value listi

id or av list :=identifier i attribute value list

attributevaluelist

(attributeassociation (comma attributeassociation))

attributeassociation ::= [attribute-name =>] expression

attribute name identifier

62

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

-- EXPRESSIONS

-- Subset of ADA expressions

expression ::= limited expression I unquoted string
-- A single unquoted string can be an expression,
-- except within an expression statement.

unquoted string ::= database literal
-- Includes simple identifiers.

limited-expression ::= relation { logicaloperator relation)

relation ::= simpleexpression
I simple expression or unquoted string relationaloperator

simple _expressionor unquoted string
I simple expression or unquoted string [NOT] IN discrete-range

simple expression [unaryoperatoriterm
T [unaryoperator)term or unquoted string adding operator

term or unquoted string
{ addingoperator term or unquoted string)

term primary

I primary or unquoted string multiplyingoperator
primary-or-unquoted string
{ multiply~ng_operator term or unquoted string)

I attribute

primary ::= literal I variable 1
(expression) I function-call

simple expression or unquoted string
simple _expressio 1 -unquotedstring

63

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

4 'K.

term or unquoted string
term 1-uuquoted-strinq

primary or unquoted string
primary 1 unquoted-string

logicaloperator ::= AND I OR

relational-operator = I /= I I <= I> >=

unary-operator ::= + I - I NOT

addingoperator ::= + I - I &

multiplyingoperator * /

literal ::= character-string I numeric literal

variable ::= %identifier[(expression)]
-- A variable name must begin with a '%'.

-- The variable name is optionally followed by an substring
index.

attribute
primaryor unquoted strinq'primary or unquoted striig

-- Evaluates to the value of the attribute associated
-- with the database object.

64

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

- -COMMANDS

commandinput ::= command {terminator command)

terminator ::= newline I semicolon

newline [comment] <CR>

comment -- { character }
-- As in ADA

command
[label] statement{-I statement } [-< objname I [-> objname I [-&

-- The notation -1 between two commands indicates that

-- the command are to be connected via a pipe.
-- Standard output of the left side of a pipe becomes

-- standard input of the right side of a pipe.
-- The notation -& indicates that the command's execution should

-- take place in the background. A task is generated to perform

-- the command.
-- The notation -< is used to indicate that the leftmost command's
-- standard input should be directed from OBJNAME.
-- The notation -> is used to indicate that the rightmost command's
-- standard output should be directed to OBJNAME.

label ::= <<identifier>>

statement ::= simplestatement I compoundstatement

simple statement ::= null statement I
program or script call statement i
assignment statement I-
return statement I
suspend statement I
logoff 1tatement I
set input statement I
set outpuE statement I
abot statement I

wait statement I
list-vars statementl
exit statement I
expression statement I
exec statement I

65

INTERMETRICS INCORPORATED 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

compound-statement ::= if statement I loop statement
subprog~am simulation statement

I block statement

null-statement :: <>

program or script call statement ::= objname[actualparameterpart]
-- Sim-laF to ADA procedure invocation.
-- OBJNAME may be a linked executable object or a CP script.
-- Invocation syntax is the same for either.

actualparameter part [(] parameter association
(separator parameter_association}[)]

separator ::= blank I comma
-- Parameters are separated by blank or comma.
-- However, if the user wishes to continue the parameter list
-- on the next line, a comma is required.

parameter association [formal parameter => I actual parameter
-- Named and positional parameters can be in any order Tn
-- the parameter association. For example,
-- prog 1 parm4 => 2 5
-- The semantics of this ordering is as follows:
-- All positional parameters are grouped together, followed
_-- by all named parameters.

-- Parameter values can be specified more than once in the
-- same command invocation. For example,
-- prog I parm4 => 2 5 parm4 => 3
-- The CP also implements default OUT parameters, as follows:
-- If, at the end of parameter specification, an OUT
-- parameter has been omitted, the CP will implicitely
-- declare a variable named %formal parameter name, and will

generate a parameter specification of the 'orm
formal parmameter => %formalparameter name

66

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

formalparameter ::= identifier

actualparameter ::= expression I helpmark

help mark ::= question mark I colon
-- fnstead of typing an actual parameter value, the user can type
-- a question mark to find out information about the parameter.
-- Action taken depends on the "help" attributes of the
-- invoked program or script.
-- If those attributes indicate that the program
-- wishes to handle help requests itself, the
-- actual parameter part is considered to be complete, and the
-- program is invoked. The program will presumably take special
-- actions when it encounters the '?' or ':' as an actual parameter
-- value.
-- If the "help" attributes indicate that help files are
-- available, the CP prints the appropriate
-- file, and allows the user to continue specifying the
-- actualparameterpart for the program or script.

functioncall ::= objname([actualparameterpart])
-- Unlike a program call, the function parameters
-- must be surrounded by parentheses.
-- As in a program call, help may be requested
-- on a per-parameter basis.

assignmentstatement ::= attribute := expression I
variable := expression

-- As in ADA, except that attribute references to database
-- objects can appear on the statement's left hand side.

return statement ::= RETURN [expression
-- CaUses termination of the CP. Control is returned to the
-- CP's invoker.

-If the CP was processing a script which described a
-- function, the function is given the return value described
-- by the expression.

67

INERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

suspend statement ::= SUSPEND objname
-- Suspend the current CP's execution and return control to
-- the CP's invoker.
-- The CP's context object is saved in OBJNAME, which may be
-- used as RESUME's argument.

logoff statement ::= LOGOFF
-- The current CP session is terminated, along with the
-- entire MAPSE session.

set input statement SET INPUT [objname]
set outputstatement ::= SET OUTPUT [objnamel

-- Resets standard input or-output for all subsequent commands.

abort statement ::= ABORT tasknames
-- A~ort the specified background tasks.

wait statement ::= WAIT tasknames
-- Wait for the specified background tasks to complete before

-- accepting more commands.

tasknames ::= identifier {separator identifier)

expression statement ::= limited expression
-- Any expression is legal but a single unquoted string.

exec-statement ::= EXEC expression
-- Executes the string described by the expression as a command.

if statement ::= IF condition THEN command input
- ELSIF condition THEN commanainput}
ELSE commandinput I END IF

-- Same as ADA

condition ::= expression
-- Must evaluate to boolean.

loop statement ::= [iteration clause] basic loop
-- roops are legal in interactive as well as script mode.

iteration-clause ::= FOR variable IN discreterange
WHILE condition

-- As in ADA

68

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 e (617) 861-1840

discrete range :: expression .. expression

basicloop ::= LOOP command input END LOOP

exit statement ::= EXIT

block statement ::= BEGIN commandinput END

subprogram simulation statement
sUbprogram specification IS block statement [identifier]

-- Execution of thTs statement causes the-CP to import
-- from the CP's context object
-- parameters specified in the SUBPROGRAM SPECIFICATION,
-- execute the commands contained in BLOCK STATEMENT,
-- then write updated OUT parameter values-back to
-- the CP's context object.
-- This enables the user to create a CP script which simulates
-- an ADA program.

subprogram specification ::=
PROCEDURE identifier [formal part]
FUNCTION identifier [formal-part] RETURN subtype indication

-- General scheme for scrTpt parameters: their-formal name
-- must have the same format as any CP variable - i.e.,
-- %identifier. Thus, they can be treated as any CP
-- variable.
-- The program invoking the CP script may optionally
-- omit the leading '%' when specifying a script's
-- formal parameter name.

formal part
(param-eter declaration { terminator parameter declaration I

-- Parameter declarations can be separated by-newline or semicolon.

parameter declaration ::=

CP identifierlist: mode subtype indication [:= expression]

CP identifier list ::= variable { , variable I

mode ::= [IN] I OUT I IN OUT

subtype indication :: INTEGER I BOOLEAN I STRING I REAL
-- Any-legal MCL type.

list vars statement ::= LISTVARS

69

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

10.2 Statements and Fundamental Programs

The following tables summarize those MCL commands which are
statements (i.e., executed via internal CP actions) and those which
are effected via invocation of a fundamental program.

70

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 61-180

TABLE 10-1: STATEMENTS

Name Reason for Internal Execution

assignment References internal CP variables.
list vars

return Checks for active internal background tasks,
logoff terminate CP invocation.
suspend

wait
abort Affects the status of background tasks.

set input Modifies the standard I/O files for any
set-output invoked from the CP.

if Modifies flow of MCL
loop command execution.
exit

subprogram-simulation Reads and writes parameters from CP's context
object.

block Notation following the block (I/O
redirection, pipe or background) must be
interpreted by the CP.

exec String is evaluated by the CP as if it
were typed by the user as a command

71

* INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

TABLE 10-2: FUNDAMENTAL PROGRAMS

Name Comments

GET Values returned as OUT parameters.

PUT Values received as IN parameters.

HELP

RESUME Invokes the CP. RESUME's argument
specifies the CP's context object.

STOP KAPSE function.

START

CANCEL

STATUS

database manipulation
commands

LEXICAL LENGTH

I

i'>

72

INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

F .- *.
°

- - , - - - --.. . . 0-

10.3 Ada - MCL Comparison

TABLE 10-3: COMMANDS

MCL Ada Differences
Command Statement

Program Call Procedure Call 1. program name replaces the
procedure name.

2. parentheses surrounding the
actual parameter part may
be omitted.

3. parameter associations may
be separated by a blank.

4. positional and named para-
meters may be freely mixed.

5. named parameters may be
repeated.

6. default OUT parameters are
generated.

7. parameter help available.

assignment assignment left-hand side may describe a
database attribute.

get get 1. reads from standard input
only.

2. reads text only.

3. reads a variable number
of values.

put put 1. writes to standard output
only.

2. writes text only.

3. writes a variable number
or values.

73

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

. _ : ~ ~ ~~.: - i

TABLE 10-3: COMMANDS (Cont'd.)

if if

loop loop

exit exit 1. only the enclosing loop
maybe exited.

2. no condition may be
assciated with the exit.

return return

set-input set input 1. takes as its argument a
set output set output database object name rather

than an open file.

2. if its argument is omitted,
standard input(output)
reverts to the CP's
standard (output).

abort abort

block block

subprogram subprogram formal parameter names must
simulation specification follow the format of CP

variables (i.e., must begin
with '%').

74

INTERMETRICS INCORPORATED, 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

TABLE 10-4: LANGUAGE ELEMENTS

MCL Ada
element element Differences

numeric numeric
literals literals

string string may be unquoted.
literals literal

boolean boolean
literals literals

types types pre-defined set.

variables variables 1. name must be preceded by

2. type is STRING only.

3. Substring operator.

expressions expressions no xor, and then, or else, mod,
rem or exponentiation
operators.

S. I

75

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS0213P (R17) 661-1840

MISSION
Of

Rom Air Development Center
1RADC ptan-s and execwte/s tu~eaktch, devetopmenit, it eAit and
set~ecited acquisitlion ptkogkLam in suppok~t o4 Command, Contot
Communicatone and Intetfience (C31) act~vitie,. TechnicaC
and en9ginee'uing Auppo'Tt within ateas o4 itechnicat compeitence
i-s rytou-ded ito ESP) Pkog Lam O6 cg6 (PO-s) and oithet ESV
etementz. The p~incipat itechnicat milssor a~eas ate
commnications, etettiow~agnetic guidance and cont'oe, swi~-
ve~itlance o gkottnd and aefto-pace objeicts, i&te>Wqence data
coftCection and handting, -in~owmation sy6tcm technoeogy, f

tono,6pheric rptopacjaion, soP~d s5tate sciencez, m-tc~oukzve
phy'sie, and eieect~onic te~ahbiity, maintitwnability and
cornpatibiYtity.

:4

